Home www.play-hookey.com Tue, 09-19-2017
| Direct Current | Alternating Current | Semiconductors | Digital | Logic Families | Digital Experiments | Computers |
| Analog | Analog Experiments | Oscillators | Optics | HTML Test |
| Combinational Logic | Sequential Logic | Alternate Flip-Flop Circuits | Counters | Registers | The 555 Timer |
| Basic Gates | Derived Gates | The XOR Function | Boolean Algebra | Binary Addition | Negative Numbers and Binary Subtraction |
| Two-Input Multiplexer | Four-Input Multiplexer | One-to-Two Line Decoder/Demultiplexer | Two-to-Four Line Decoder/Demultiplexer |

Boolean Algebra

One of the primary requirements when dealing with digital circuits is to find ways to make them as simple as possible. This constantly requires that complex logical expressions be reduced to simpler expressions that nevertheless produce the same results under all possible conditions. The simpler expression can then be implemented with a smaller, simpler circuit, which in turn saves the price of the unnecessary gates, reduces the number of gates needed, and reduces the power and the amount of space required by those gates.

One tool to reduce logical expressions is the mathematics of logical expressions, introduced by George Boole in 1854 and known today as Boolean Algebra. The rules of Boolean Algebra are simple and straight-forward, and can be applied to any logical expression. The resulting reduced expression can then be readily tested with a Truth Table, to verify that the reduction was valid.

The rules of Boolean Algebra are:.

Prev: The XOR Function Next: Binary Addition

All pages on www.play-hookey.com copyright © 1996, 2000-2015 by Ken Bigelow
Please address queries and suggestions to: webmaster@play-hookey.com